TC4鈦合金是一種中等強度的鈦合金,因其塑性變形能力強、耐蝕性好、比強度高、鈍化能力強以及 550℃以下抗氧化性能好等特點,被稱為“萬能合金”[1-2],廣泛應(yīng)用于航空航天、生物醫(yī)學(xué)及化學(xué)工業(yè)等領(lǐng)域[3-5]。然而,TC4鈦合金屈服極限高、變形抗力大和屈服強度與極限強度比值高等成為限制其塑性變形能力提高的主要原因[1]。呂鋼等[6]研究了熱
循環(huán)對 TC4鈦合金在室溫和低溫條件下拉伸性能的影響,結(jié)果表明隨熱循環(huán)次數(shù)的增加,TC4合金抗拉強度和屈服強度提高,延伸率略有升高。經(jīng)500次循環(huán)后在 78K進(jìn)行拉伸時,試樣的延伸率顯著上升且伴有拉伸應(yīng)力躍升的現(xiàn)象。高禹等[7]研究了不同時效狀態(tài) TC4鈦合金在 77~300K溫度區(qū)間內(nèi)的拉伸性能,結(jié)果表明隨著試驗溫度的降低,拉伸斷口附近位錯分布不均勻性逐漸增大。丁嘉健等[8]研究了 TC4鈦合金在 20,300,600,700,800℃時的拉伸性能,結(jié)果表明溫度低于 500℃時,TC4鈦合金的塑性較差,溫度高于 600℃時,TC4鈦合金的塑性較好。材料的成分、組織、熱處理工藝與性能之間的關(guān)系是密不可分的,以上研究僅側(cè)重于試驗溫度對 TC4鈦合金塑性的影響。
通過室溫拉伸試驗測得的 R12型 TC4合金棒材的強度偏低。筆者在以往研究的基礎(chǔ)上,通過布氏硬度分析、化學(xué)成分分析、顯微組織觀察和拉伸試驗參數(shù)影響分析,分析了 R12型 TC4合金棒材拉伸強度偏低的原因。
1 、室溫拉伸性能
采用電子萬能試驗機,對 R12型 TC4鈦合金棒材(記 為 R12-TC4)進(jìn) 行 拉 伸 試 驗,試 驗 溫 度 為25℃,試樣尺寸見圖 1。參照 ASTME8/E8M-2016aStandard Test Methods
for Tension Testing of Metallic Materials的拉伸試驗方法,屈服前拉伸速度為 0.005mm/min,屈服后為 8mm/min,設(shè)置兩 個 平 行 試 樣,分 別 記 為 R12-TC4-1和 R12
-TC4-2,其軸向應(yīng)力-應(yīng)變曲線如圖 2所示。Rm 為抗拉強度、Rp0.2為屈服強度、A 為斷后伸長率、Z為斷面收縮率。
R12-TC4鈦合金的拉伸性能如表 1所示,可以看出 R12-TC4-1與 R12-TC4-2試樣的抗拉強度和屈服強度均低于標(biāo)準(zhǔn)值,而其斷后延伸率和斷面收縮率均高于 SAE AMS 4928R-2007
Titanium Alloy Bars, Wire, Forgings,and Rings, and Drawn Shapes 6Al4VAnnealed標(biāo)準(zhǔn)值,即 R12-TC4-1與 R12-TC4-2試樣的拉伸性能均不符合標(biāo)準(zhǔn)要求。
2 、試驗方法
2.1 布氏硬度檢測
由于材料硬度與抗拉強度之間存在對應(yīng)關(guān)系[9-10],且特別適用于晶粒粗大的金屬材料[11-12]。
因此采用 HB3000C型布氏硬度計對合金進(jìn)行硬度測量,試驗方法按照 GB/T231.1-2018《金屬材料布氏硬度試驗第一部分:試驗方法》。R12-TC4鈦合金布 氏 硬 度 通 常 在 330
HB左 右。對 直 徑 為10mm的 R12-TC4鈦合金球施加 29.4kN的試驗力,使壓頭壓入試樣表面,保持 30s后,去除試驗力,測量試樣表面的壓痕直徑。
2.2 化學(xué)成分分析
根據(jù) ASTME2371-2013 Standard Test Method For Analysis of Titanium And Titanium Alloys By Direct Current Plasma And Inductively Coupled Plasma Atomic
Emission Spectrometry (Performance -Based Test Methodology),ASTM E1409 -2013 Standard Test Method for Determination of Oxygen and Nitrogen in
Titanium and Titanium Alloys by Inert Gas Fusion, ASTM E1447 -2009 Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys
by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method,ASTM E1941 -2010 Standard Test Method for Determination of Carbon in Refractory
and Reactive Metals and Their Alloys by Combustion Analysis,測定 R12-TC4鈦合金的化學(xué)成分。
采用 OPTIMA-4300V型電感耦合等離子體發(fā)射光譜儀(美國 PE公司)和 LECO公司的氣體元素分析儀對試樣的化學(xué)成分進(jìn)行測量。將 0.1g試樣溶解于由 5mLH2O+2mL氫氟酸+1
mL硝酸配制而成的溶液中,正常溶解時不用加熱,完全溶解后將溶液轉(zhuǎn)移至 100mL塑料容量瓶中定容、搖勻,再進(jìn)行測量。碳的測量:將 0.3g屑狀試樣與 1g銅屑(助熔劑)置于瓷坩堝中,分析時間為 35s。氧、氮的測量:將 0.1g塊狀試樣與鎳籃(助熔劑)置于石墨坩堝中,脫氣功率為 5500W,分析功率為 5000W,氧的分析時間為 40s,氮的分析時間為 60s。氫的測
量:將 0.15g試樣加入 1g錫片(助熔劑)中,脫氣功率為 3500W,分析功率為 3200W,分析時間為 60s。
2.3 合金型號對比分析
參照 ISO-6892-1-2016《金屬材料-拉伸試驗第 1部分:室溫測試方法》,屈服前拉伸速度為0.005mm/min,屈服后為 8mm/min。為排除拉伸試驗參數(shù)的影響,選用 R7型 TC4鈦合金(記為 R7-TC4)作為對比試樣,分析合金型號 TC4鈦合金拉伸性能的影響。R7-TC4鈦合金的拉伸試樣尺寸如圖 3所示。
2.4 顯微組織觀察
顯微組織分析是金屬材料試驗研究的重要內(nèi)容之一,能夠采用定量金相學(xué)原理,測量和計算合金組織的三維空間形貌,建立合金成分、組織和性能間的定量關(guān)系。具有精度高、速度快等優(yōu)點,可大大提高工作效率[13-14]。
通過不同處理工藝,TC4鈦合金可以獲得馬氏體組織、粗大網(wǎng)籃組織、針狀組織、魏氏組織、蠕蟲狀組織和等軸α組織+塊狀雙態(tài)組織。其中,等軸α組織+塊狀雙態(tài)組織的塑性好于其它組織[15]。采用 ZeissAxiovert 200MAT型金相顯微鏡對拉伸性能偏低的試樣和拉伸性能正常的試樣進(jìn)行觀察,根據(jù) SAE AMS 2643E:2012 Structural Examination of Titanium Alloys Chemical Etch Inspection Procedure,將試樣進(jìn)行逐級打磨、拋光、浸蝕后,用酒精清洗并吹干后待用,浸蝕溶液由 5%(體積分?jǐn)?shù))HF+12%(體積分)HNO3+80%(體積分?jǐn)?shù))H2O配置而成。
3、 結(jié)果與討論
3.1 布氏硬度試驗
測得 R12-TC4-1試 樣 的 布 氏 硬 度 平 均 值 為287.2HB,TC4-2試 樣 的 布 氏 硬 度 平 均 值 為288.8HB,其測量結(jié)果均低于正常值(330HB);抗拉強度 Rm 與布氏硬度 HB 之間存在強相關(guān)性[16],即 Rm/HB≈3.19。因此,R12-TC4-1和 R12-TC4-2試樣 的 抗 拉 強 度 分 別 應(yīng) 為 916.17MPa和921.27MPa。對比表 1中的抗拉強度,通過布氏硬度推測出的抗拉強度與實測抗拉強度相差不大,因此排除人為因素影響。
3.2 化學(xué)成分分析
參照 GB/T3620.1-2007《鈦及鈦合金牌號和化學(xué)成分》,由表 2可見,R12-TC4鈦合金的化學(xué)成分均符合標(biāo)準(zhǔn)的技術(shù)要求。
3.3 合金型號對 TC4鈦合金拉伸性能的影響
R7-TC4鈦合金的拉伸試驗結(jié)果見表 3,其軸向應(yīng)力-應(yīng)變曲線如圖 4所示。表 3均為修約后數(shù)據(jù),修約標(biāo)準(zhǔn)參考 GB/T8170-2008《數(shù)值修約規(guī)則與極限數(shù)值的表示和規(guī)定》。
由表 3和圖 4可知,R7-TC4鈦合金的屈服強度均高于 R12-TC4鈦合金,但其抗拉強度和屈服強度均低于 GB/T13810-2007《外科植入物用鈦及鈦合金加工材》標(biāo)準(zhǔn)值,這是因為 R7
-TC4鈦合金屈服前的拉伸速度較高,其屈服強度有所提高,但提高幅度有限,這不是造成 TC4鈦合金拉伸強度偏低的主要原因。
3.4 顯微組織觀察
由圖 5a)可知,拉伸性能不合格的 R12-TC4鈦合金試樣的顯微組織為β轉(zhuǎn)變基體上的等軸狀α組織(初生α相)和短棒狀α組織(次生α相),初生α相體積分?jǐn)?shù)在 60%左右。R12-TC4鈦合金為α+β兩相鈦合金,初生α相對鈦合金的塑性影響較大,次生α相對鈦合金的強度影響較大[17]。根據(jù) GB/T6611-2008《鈦及鈦合金術(shù)語和金相圖譜》,在加熱到高于α+β兩相共存區(qū)溫度后以一定的速率冷卻,或在高于α+β兩相共存區(qū)溫度變形,均可形成這種組織。在兩相區(qū)較低溫度加熱時,組織中保留了大量初生α相,空冷后為初生α相+少量β相。當(dāng)次生α相寬度增加時,R12-TC4鈦合金的強度降低,塑性增加,隨著 R12-TC4鈦合金中初生α相含量的降低,其拉伸強度有所提高,隨著冷卻速率的加快,其強度逐漸提高。因為,R12-TC4鈦合金熱處理工藝中冷卻方式為爐冷,冷卻速度較慢,導(dǎo)致其初生α相含量升高,且出現(xiàn)了少量較寬的短棒狀次生α相,這是 R12-TC4鈦合金拉伸性能偏低的主要原因。拉伸性能合格的 R12-TC4鈦合金試樣的抗拉強度為 980MPa,屈服強度為 895MPa,斷后伸長率為 19%,斷面收縮率為42%。由圖5b)可知,拉伸性能合格的 R12-TC4鈦合金試樣的顯微組織中細(xì)條狀初生α相體積分?jǐn)?shù)在 40%左右。對比圖 5a)可知,隨著初生α相含量的下降和次生α相寬度的減小,R12-TC4鈦合金的強度增加,塑性無明顯變化。
4 、結(jié)論
(1)R12型 TC4鈦合金的布氏硬度與抗拉強度的實測值滿足 Rm/HB≈ 3.19的關(guān)系,其化學(xué)成分符合技術(shù)要求。
(2)R12型 TC4鈦合金棒材拉伸強度偏低與拉伸速度和試樣型號無明顯關(guān)系,其主要原因是其熱處理工藝中的冷卻方式為爐冷,冷卻速率較慢,導(dǎo)致其初生α相含量較多,且出現(xiàn)了少量較寬的短棒狀次生α相。
參考文獻(xiàn):
[1] 李桂榮,王芳芳,王宏明,等.脈沖強磁場拉伸時 TC4鈦合金的塑變能力和微觀組織[J].稀有金屬材料與工程,2018,47(4):1119-1123.
[2] 王琦.TC4鈦合金的低溫拉伸性能[J].材料工程,2009,37(3):54-55,61.
[3] WU B Y,XIONG S B,GUO Y Q,etal.Tooth -colored bioactive titanium alloy prepared with anodic oxidation method for dental implant application[J].Materials
Letters,2019,248:134-137.
[4] XIE R Z,LIN N M,ZHOU P,et al.Surface damage mitigation of TC4 alloy viamicro arc oxidation for oil and gas exploitation application:Characterizations of
microstructure and evaluations on surface performance [J].Applied Surface Science,2018,436:467-476.
[5] 于振濤,余森,程軍,等.新型醫(yī)用鈦合金材料的研發(fā)和應(yīng)用現(xiàn)狀[J].金屬學(xué)報,2017,53(10):1238-1264.
[6] 呂鋼,董尚利,王慶民,等.熱循環(huán)對 TC4合金室溫和低溫拉伸性能的影響[J].材料熱處理學(xué)報,2009,30(2):36-38.
[7] 高禹,何世禹,楊德莊,等.低溫對時效態(tài) TC4合金拉伸性能的影響[J].材料科學(xué)與工藝,2002,10(4):352-356.
[8] 丁嘉健,劉家和,楊展銘,等.TC4鈦合金板材高溫?zé)崂煨阅艿难芯縖J].科技創(chuàng)新與應(yīng)用,2019(11):41-42,45.
[9] 姚良,徐浩杰,劉麗.雙自封高液壓氣管接頭開裂原因分析[J].理化檢驗 (物理分冊),2019,55(9):643-645.
[10] 張鳳林.現(xiàn)場布氏硬度檢測技術(shù)[J].理化檢驗(物理分冊),2015,51(12):845-852.
[11] 陳亞軍,周姝,白云.民航維修領(lǐng)域金屬材料洛氏硬度檢測標(biāo)準(zhǔn)的對比分 析 [J].理 化 檢 驗 (物 理 分 冊),2015,51(9):636-642.
[12] 王濤,荊洪陽,徐連勇,等.基于里氏硬度測量的 P92鋼及焊縫布氏硬度的計算[J].焊接學(xué)報,2016,37(9):87-90,132.
[13] 王建萍,王家平,許建廣.數(shù)字圖像處理在定量金相分析中的應(yīng)用[J].材料導(dǎo)報,2003,17(1):63-65,77.
[14] NEERAJ T,HOU D H,DAEHN G S,et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J].Acta Materialia,2000,48(6):1225-1238.
[15] 劉建強.TC4鈦合金的顯微組織及其抗沖擊韌性[J].熱加工工藝,2013,42(12):63-66.
[16] 孫遠(yuǎn)東.布氏硬度與抗拉強度的相關(guān)性在質(zhì)控中的應(yīng)用[J].兵器材料科學(xué)與工程,2019,42(2):92-95.
[17] 祝力偉,王新南,朱知壽.不同熱處理工藝下 TC4-DT鈦合金的顯微組織及力學(xué)性能 [J].鈦工業(yè) 進(jìn) 展,2012,29(1):9-12.
相關(guān)鏈接